

Features

- InGaN Green*3 Dice LED
- Size : 5.0mm×5.0mm×1.5mm
- · High luminous intensity, high reliability and long life
- With ROHS Compliant

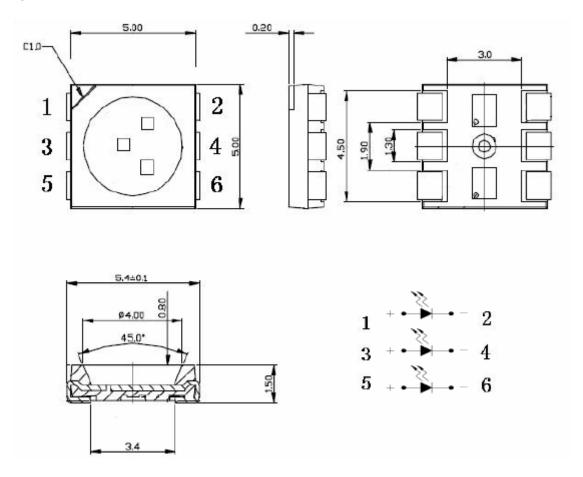
Descriptions

- The 5050 SMD LED is much smaller than lead frame type components thus enable smaller board size, higher packing density, reduced storage space and finally smaller equipment to be obtained
- Besides, lightweight makes them ideal for miniature applications.etc

Usage Notes:

- Surge will damage the LED
- When using LED, it must use a protective resistor in series with DC current about 20mA

Applications


- Amusement equipment >
- Information boards >
- Flashlight for digital camera of cellular phone >
- Lighting for small size device.

Device Selection Guide

LED Boot No.	CI	hip	Laura Oalan
LED Part No.	Material	Emitted Color	Lens Color
5050SUGC	InGaN	Ultra bright Green	Water clear

Package Dimensions

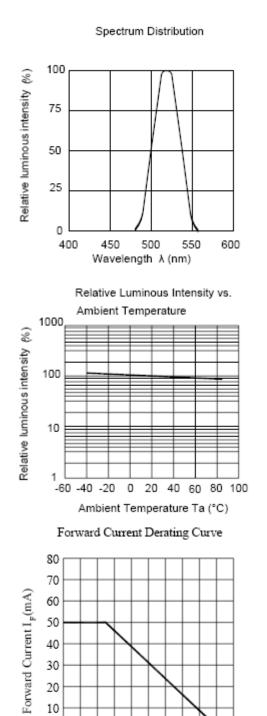
Notes:

- Other dimensions are in millimeters, tolerance is 0.25mm except being specified.
- Protruded resin under flange is 1.5mm Max LED.
- Bare copper alloy is exposed at tie-bar portion after cutting.

Absolute Maximum Rating (Ta=25°C)

Parameter	Symbol	Absolute Maximum Rating	Unit	
Peak Forward Current	_	100	mA	
(Duty 1/10 @1KHz)	l _F	100	IIIA	
Forward Current	I _{FM}	50	mA	
Reverse Voltage	V _R	5	V	
Power Dissipation	P _D	300	mW	
Operating Temperature	Topr	-40~+80	$^{\circ}$ C	
Storage Temperature	Tstg	-40∼+100	$^{\circ}$ C	
Coldoring Tomporature	Tabl	Reflow Soldering : 260 ℃ for 10 sec.		
Soldering Temperature	Tsol	Hand Soldering : 350 ℃ for 3 sec.		

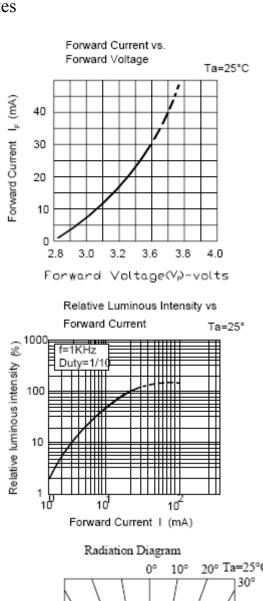
Electro-Optical Characteristics (Ta=25°C)

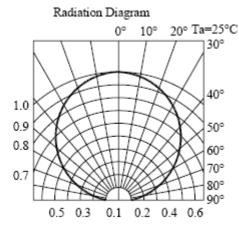

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	Iv	5000		7000	mcd	IF=20mA(Note1)
Viewing Angle	$2\theta_{1/2}$		120		Deg	(Note 2)
Peak Emission Wavelength	λр	520	525		nm	IF=20mA
Spectral Line Half-Width	Δλ		30	40	nm	IF=20mA
Forward Voltage	V_{F}	3.0		3.4	V	IF=20mA
Reverse Current	I_R			50	μΑ	VR=5V

Note:

- 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
- 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

Typical Electro-Optical Characteristics Curves




80

Ambient Temperature $T_a(^{\circ}C)$

100

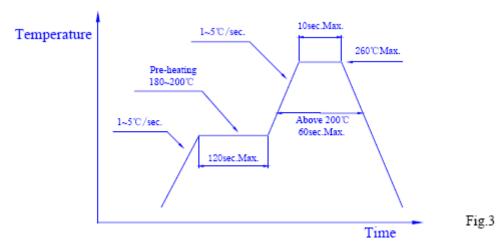
0 0

Reliability Test Items And Conditions

No	Item	Test Condition	Sample Number	Criteria for Judging	Ac/Re
1	Solder ability	T=235±5°C T=5sec.	15	Good wetting	0/1
	2 Soldering heat			IV≥LSL*	
2		$T=260\pm5$ °C $T=10$ sec.	15	VF≪USL*	0/1
				IR≪USL	
		L:-40°C 10min			
		(2~3) min			
	Rapid change of	H:+100°C 10min		IV>I CI	
3	temperature followed by:	5cycle	11		0/1
)	damp heat, cyclic	T= (25~55) °C	11		0/ 1
	damp neat, cyclic	RH: (90~95) %		IK<05L	
		2cycle 48h			
		recovery time 2h			
		T=(25~55)°C		IV≥0.7LSL	
4	Damp heat, cyclic	RH= (90~95) %	11		0/1
	Bump neat, eyene	6 cycle 144h	11		0/1
		recovery time 2h		Good wetting IV≥LSL* VF≤USL*	
		I =30mA		IV≥0.7LSL	
5	Electrical endurance	Electrical endurance F			0/1
	T=1000h	IR≤2USL			
	Storage at high temperature	T =100±2°C		IV≥LSL	
6		stg	15	VF≤USL	0/1
		t=1000h		IR≤USL	
7	Terminal strength	Tensile: W=5N t= 30s	15	No damage	0/1
,		Bending: W=2.5N 2times	13		

*U.S.L.: Upper Standard Level

* L.S.L.: Lower Standard Level



APPLICATION NOTES:

- 1) Soldering:
- ① Manual soldering by soldering iron:

The use of a soldering iron of less than 25W is recommended and the temperature of the iron must be kept at no higher than 300° C.

- 2 Reflow soldering:
- a. The temperature profile as shown in Fig. 3 is recommended for soldering SMD LED by the reflow furnace.
- b. Care must be taken that the products be handled after their temperature has dropped down to the normal room temperature after soldering.

2) Post solder cleaning:

When cleaning after soldering is needed, the following conditions must be adhered to.

① Cleaning solvents: Freon TF or equivalent or alcohol.

- 2 Temperature: 50°C Max. for 30 seconds or 30°C Max. for 3 minutes
- ③ Ultrasonic: 300W Max.
- 3) OTHERS:
- a. Care must be taken not to cause stress to the epoxy resin portion of SMD LED while it is exposed to the high temperature.
- b. Care must be taken not to the rub the epoxy resin portion of SMD LED with a hard or sharp edged article such as the sand blast and the metal hook as the epoxy resin is rather soft and liable to be damaged.